

Contents
 Introduction ... 3

🛠 Requirements .. 4

 Installation Guide ... 5

 Database Structure .. 7

🗂 Project Structure .. 10

2.2.1. public/add_photo_sample.php .. 11

2.2.2. public/create_admin.php ... 12

2.2.3. public/dashboard.php .. 12

2.2.4. public/del_app_log.php .. 12

2.2.5. public/delete_design.php ... 12

2.2.6. public/delete_person.php .. 12

2.2.7. public/generate_photo.php.. 13

2.2.8. public/login.php .. 16

2.2.9. public/logout.php ... 18

2.2.10. public/nav_admin.php .. 20

2.2.11. public/settings.php ... 22

2.2.12. public/update_password.php .. 24

2.2.13. public/upload_design.php .. 26

2.2.14. public/upload_person.php ... 28

2.2.15. public/view_designs.php .. 32

2.2.16. public/view_person.php ... 34

2.2.17. public/view_photo_sample.php .. 38

2.3.1. src/AdminAuth.php ... 42

2.3.2. src/Database.php .. 43

2.3.3. src/index.php .. 44

2.3.4. src/Logger.php ... 44

2.3.5. src/MasterDesign.php... 45

2.3.6. src/PersonModel.php ... 47

2.3.7. src/PhotoSample.php ... 49

2.3.8. src/ReplicateService.php .. 53

2.3.9. src/Settings.php .. 56

2.4.1. bootstrap.php .. 58

2.4.2. config.php .. 60

2.4.3 .htaccess .. 61

 Developer Contact .. 62

 AI T-Shirt Design Application – Documentation

(EN)

🌟 Introduction

This is a t-shirt design application that allows you to generate a realistic visual of a person

wearing your custom t-shirt design using AI. It simplifies the process of visualizing and

presenting your digital t-shirt artwork.

As a side hustle, you can become a freelance t-shirt designer. Just find a local DTG (Direct to

Garment) t-shirt printing vendor near you. Compare prices, shirt colors, materials, and sizes.

For each customer order, you can set your own profit margin between 10% to 30%.

You can upload:

• Your t-shirt design (artwork)

• A person’s photo (endorser or model wearing a plain t-shirt)

The AI will merge your digital design with the model photo, resulting in a mock-up of a t-

shirt worn by that person.

Ensure your master design file is in high resolution (hi-res) to maintain quality for print or

display.

Demo video:

https://www.youtube.com/watch?v=JomXxoUOLRo

🛠 Requirements
To use this application, you must:

• Have your own hosting and domain

• Have a Replicate.com API Token (get it at https://replicate.com/account/api-tokens)

• Understand basic PHP & MySQL and how to host PHP applications

https://www.youtube.com/watch?v=JomXxoUOLRo
https://replicate.com/account/api-tokens

🚀 Installation Guide
Follow these steps to set up your AI T-Shirt Design Application:

1. Upload the Application

• Linux (Apache server)

Upload designkaos.zip to:

/var/www/html/yourfolder

• Windows (XAMPP)

Upload designkaos.zip to:
C:/xampp/htdocs/yourfolder

Replace yourfolder with your desired app folder name (e.g. kaosai)

2. Create the Database

• Create a new MySQL database (you can name it designkaos or anything else)

• Use phpMyAdmin to import the SQL file:

sql/designkaos.sql

3. Edit Database Configuration

• Open config.php located in your root folder

• Set the database connection to match your setup:

'db' => [

 'host' => 'localhost',

 'dbname' => 'designkaos', // your database name

 'user' => 'root', // your database user

 'password' => '', // your database password

 'charset' => 'utf8mb4',

],

 4. Edit .htaccess to Match Your Folder Name

• Open the .htaccess file in the root folder

• Update this line:

RewriteBase /yourfolder/

Replace /yourfolder/ with your actual folder name

—for example, if your app is in kaosai:

RewriteBase /kaosai/

RewriteCond %{REQUEST_URI} ^/kaosai/?$ [NC]

RewriteRule ^$ public/login.php [L,R=302]

This ensures URL redirection works correctly in browsers.

5. Create Admin Account

• Visit the setup script in your browser:

http://localhost/yourfolder/public/create_admin.php

• Set your initial admin username and password.

6. Login to Admin Dashboard

• Visit the login page:

https://yourdomain.com/yourfolder/public/login.php

7. Set API Key & Host

• After login, go to Settings menu

• Enter your:

o Replicate API Token

o Application base URL (e.g. https://yourdomain.com/yourfolder/)

8. Delete Logs (Optional)

• Use the Delete Logs menu in the dashboard to clear old log files.

 Important Tips

 Admin Dashboard is Private!

The admin dashboard is only for you as the app owner.

Do NOT share the login access with anyone else.

Admin access allows full control of the design, image generation, file deletion, and API

usage.

 Replicate API Cost

Using Replicate API to generate images is not free.

Each image costs around $0.02 to $0.06 USD depending on the model and resolution.

Make sure to:

• Monitor usage regularly.

• Set a budget or usage limit.

• Avoid unnecessary image generations during testing.

📦Database Structure

 Database: designkaos

This database is used by your AI T-Shirt Design Application to store:

• Uploaded T-shirt designs

• Admin login credentials

• Person (model) images

• Generated AI image results

• Application settings (API keys, domain, etc.)

 1. Table: masterdesign

Stores uploaded T-shirt design data.

Column Type Description

id int, AUTO_INCREMENT Unique ID for each design

Column Type Description

titledesign varchar(255) Title or name of the design

imagesdesign varchar(255) File name of the uploaded design image

ispublish tinyint(1) 1 = published, 0 = hidden

submitdate Datetime When the design was uploaded

 Primary Key: id

 2. Table: msadmin

Stores admin login credentials.

Column Type Description

adminid int, AUTO_INCREMENT Unique ID for admin

loginadmin varchar(255) Admin username

loginpassword Text Hashed password (never plaintext)

 Primary Key: adminid

 3. Table: person

Stores person/model images used for T-shirt mockups.

Column Type Description

id int, AUTO_INCREMENT Unique ID for each person

titleperson varchar(255) Name or label for the person

person_images Text File name of the uploaded person image

submitdate Datetime Upload timestamp

 Primary Key: id

 4. Table: photosample

Stores AI-generated image combinations between a design and a person.

Column Type Description

id int, AUTO_INCREMENT Unique ID

predictionid Text ID returned by the Replicate API

designid Int Foreign key referring to masterdesign.id

personid Int Foreign key referring to person.id

urlimagesdesign Text URL/path of the design image

urlimagesperson Text URL/path of the person image

imagesresult Text URL/path of the AI-generated result

ispublish tinyint(1) 1 = published, 0 = private

generateddate Datetime When the image was generated

 Primary Key: id

 5. Table: settings

Stores application configuration settings, like API tokens and domain names.

Column Type Description

id int, AUTO_INCREMENT Unique ID

key varchar(255) Configuration key name (e.g., API token)

value Text Configuration value (e.g., domain URL)

 Primary Key: id

 Example entries:

(1, 'REPLICATE_API_TOKEN', 'your_token_here'),

(2, 'HOST_DOMAIN', 'https://yourdomain.com/yourfolder/public');

 Summary of Primary Keys and Auto-Increment

Table Primary Key Auto-Increment Description

masterdesign id Yes (next: 28) T-shirt design entries

msadmin adminid Yes (next: 3) Admin account info

person id Yes (next: 16) Person/model image data

photosample id Yes (next: 79) AI-generated design + model results

settings id Yes (next: 3) App-wide config (tokens, URLs, etc.)

 Additional Notes:

• All tables use InnoDB engine and utf8mb4 charset for full Unicode support.

• Each entity (design, person, sample) is stored with timestamps for sorting.

• The photosample table acts as a junction table linking designs and persons, plus AI

output.

• The settings table is flexible, allowing easy updates to tokens, domains, and

environment configs.

🗂 Project Structure
/your-app-folder/

│

├── public/ ← user-accessible PHP files

│ ├── login.php, dashboard.php, upload_design.php, etc.

│

├── src/ ← backend classes & logic

│ ├── Database.php, Logger.php, AdminAuth.php, etc.

│

├── sql/ ← SQL file for DB setup

├── logs/ ← Application logs

├── documentation/ ← User docs (optional)

├── .htaccess ← Redirects

├── index.php ← Redirect to login/dashboard

 Important Folders inside /public

• imagesmasterdesign – for your digital t-shirt design artwork (.jpg, .png, .webp)

• imagesperson – for photos of endorsers wearing blank t-shirts

• imagesresult – AI-generated output combining the design and endorser

 Main Files Explained

2.2.1. public/add_photo_sample.php

Admin form to select:

• A master design

• An endorser photo

It stores this combination into the photosample table and redirects to

view_photo_sample.php. These are later processed by the AI into a final visual mock-up.

2.2.2. public/create_admin.php

Web-based form to:

• Create a new admin account

• Update existing admin password

This file is typically used during the first install. Once configured, you should either delete it

or disable it in config.php:

'features' => [

 'admin_password' => false, // true = allow setup, false = disable setup

],

2.2.3. public/dashboard.php

Admin dashboard displaying:

• App overview (ID + EN)

• Features & benefits

• Installation instructions

• Contact links (WhatsApp, Instagram, LinkedIn)

2.2.4. public/del_app_log.php

Page for admins to manually delete logs/app.log.

Useful for cleaning old logs and managing disk space.

2.2.5. public/delete_design.php

Deletes a master design based on the id in the URL.

Also removes the design image file and logs the action.

Security features:

• Requires admin login

• Integer-only ID sanitization

• Logs deletion activity

2.2.6. public/delete_person.php

Deletes a person/endorser record.

Also removes the associated photo file and logs the activity.

 Tables Involved

• masterdesign – stores uploaded t-shirt designs

• person – stores uploaded endorser photos

• photosample – stores design + person combinations

• msadmin – stores admin credentials

2.2.7. public/generate_photo.php

 File Description

The file public/generate_photo.php serves as the main backend script responsible for

generating a mock-up image by combining a t-shirt design and a person’s photo (endorser),

using AI from Replicate.com. The output is then automatically downloaded and stored on

the server.

 Primary Objectives

• Fetch sample data (photosample) by ID

• Send a request to the Replicate AI API with both the design and person photo

• Download the AI-generated result image

• Save the resulting image in the imagesresult/ folder

• Save the result path in the photosample database table

• Redirect back to the view_photo_sample.php page

 Step-by-Step Explanation

 1. Admin Access Protection

session_start();

if (empty($_SESSION['admin'])) {

 header('Location: login.php'); exit;

}

Only authenticated admin users are allowed to execute this script.

 2. Initialization

$settings = new Settings($db);

$token = $settings->get('REPLICATE_API_TOKEN');

$ps = new PhotoSample($db);

$rs = new ReplicateService($token);

Initializes settings and loads the API token from the database to prepare for communication

with Replicate.com.

 3. Validate Input and Fetch Sample Record

$id = (int)($_POST['id'] ?? 0);

$sample = $db->fetch('SELECT * FROM photosample WHERE id = :id', [':id'=>$id]);

Ensures a valid sample ID is provided and retrieves the corresponding record from the

database.

 4. Prepare Image URLs (with Public Host Domain)

$host = rtrim($settings->get('HOST_DOMAIN'), '/');

$sample['urlimagesdesign'] = $host . '/' . ltrim($sample['urlimagesdesign'], '/');

$sample['urlimagesperson'] = $host . '/' . ltrim($sample['urlimagesperson'], '/');

These URLs ensure that the images are accessible publicly for Replicate.com’s API to fetch.

 5. Send Prompt to Replicate API

$prompt = "Put the person into a plain t-shirt with the medium design on it. Size of design is medium.";

$prediction = $rs->generateAndWait($sample['urlimagesdesign'], $sample['urlimagesperson'], $prompt);

The API is instructed to combine the two images with a defined prompt to produce a realistic

mockup.

 6. Save Prediction ID

$ps->updatePredictionId($id, $prediction['id']);

The prediction ID returned by Replicate is saved for logging or future tracking.

 7. Download AI Output Image

$outputUrl = $prediction['output'] ?? null;

$data = file_get_contents($outputUrl);

Fetches the final mock-up image from Replicate's CDN.

 8. Save the Image to Local Folder

$fname = $id . '_' . bin2hex(random_bytes(4)) . '.' . $ext;

file_put_contents($local, $data);

The image is stored locally in imagesresult/, using a randomized filename for uniqueness.

 9. Update Result Path to Database

$ps->updateResult($id, 'imagesresult/' . $fname);

Stores the relative path of the output image in the database.

 10. Redirect to Result Page

header('Location: view_photo_sample.php');

User is redirected to view the list of AI-generated mockups.

 Involved Folders

Folder Purpose

imagesmasterdesign/ Stores digital t-shirt design images

imagesperson/ Stores photos of models/endorsers

imagesresult/ Stores AI-generated output images

 Security & Stability

Feature Status

 Admin authentication Enforced

 Numeric ID validation Safe

 Exception handling/log Included

 Auto folder creation Supported

 Unique file naming Secured

 Conclusion

The generate_photo.php file acts as the core AI pipeline in this application.

It handles the entire process from data fetching, prompt generation, AI rendering, image

downloading, to database updating and user redirection.

Its well-structured design makes it highly reliable, secure, and essential for any AI-powered

mock-up system.

2.2.8. public/login.php

 File Description

The file public/login.php provides a clean, secure, and responsive admin login interface. This

form validates user credentials against the msadmin database using AdminAuth::verify() and

starts a session upon success.

 Primary Objectives

• Allow admin to log in securely

• Start a session for authenticated access

• Redirect successful logins to the dashboard (dashboard.php)

• Display error message on failure

 Step-by-Step Explanation

 1. Session Start & Form Handling

session_start();

Initiates a session. If the form is submitted using POST, the script retrieves and trims the

username and password inputs.

 2. Verification

if ($adminAuth->verify($u, $p)) {

 $_SESSION['admin'] = $u;

 $_SESSION['login_time'] = date('Y-m-d H:i:s');

 header('Location: dashboard.php');

 exit;

}

• Credentials are verified using AdminAuth::verify()

• On success:

o Session variable admin is set

o Current timestamp is stored in login_time

o Redirects to the admin dashboard

 If Verification Fails

$err = 'Login gagal. Username atau password salah.';

Logger::warning("Login failed for {$u}");

An error message is shown, and a log entry is written.

 HTML UI Features

• Built using Bootstrap 5

• Includes:

o Username and Password input fields

o Password visibility toggle button (icon)

o Error alert on failed login

• Styled for responsiveness

 Security Features

Feature Status

 Prepared input Yes (via verify logic)

 Server-side validation Yes

 Password hash checking Yes (password_verify)

 Session protection Yes

 Error logging Yes

 UI Features

Component Description

Username input Required field for login name

Password input Required field, hidden by default

Eye icon toggle Reveals password for user convenience

Submit button Triggers authentication logic

Error alert Shows feedback on incorrect login attempt

 Conclusion

The login.php file provides a professional and secure admin login mechanism with a

responsive UI. It is a critical part of any backend system and is built to integrate tightly with

the rest of the admin panel.

2.2.9. public/logout.php

 File Description

The file public/logout.php is a simple and essential logout script for ending the current

admin session. It ensures that after logging out, the user is redirected back to the login page

and loses access to all authenticated admin features.

 Primary Objectives

• Terminate the current session

• Log the user out securely

• Redirect the user to login.php

 Code Breakdown

 1. Start the Session

session_start();

Initializes the session, required in order to destroy it.

 2. Destroy the Session

session_destroy();

Clears all session data, effectively logging the user out.

 3. Redirect to Login Page

header('Location: login.php');

exit;

Redirects the user to the login page after logout is complete.

 Security Benefits

Feature Status

 Ends admin session Yes

 Prevents back-button access Yes (after logout, protected pages redirect to login)

 Clean and fast Yes

 Conclusion

The logout.php script provides a clean and effective mechanism for terminating an admin

session. It is essential in maintaining session-based access control and contributes to the

overall security of the application.

Its simplicity ensures:

• Fast logout

• No residual session data

• Smooth redirect experience

2.2.10. public/nav_admin.php

 File Description

The file nav_admin.php provides the main admin sidebar navigation for the application. It is

included on most admin pages to ensure consistent navigation between sections.

This sidebar uses Bootstrap 5 components and Bootstrap Icons to offer a clean, collapsible,

and user-friendly menu layout.

 Function and Role

• Acts as the primary navigation UI for the admin panel

• Allows quick access to all major features, including:

o Dashboard

o Settings

o Design and Person upload & view

o Photo mockup generation

o Password updates and logout

• Structured as a Bootstrap accordion menu with icons for intuitive access

 Menu Structure Overview

Menu Item Icon Description

Dashboard bi-speedometer2 Redirects to the admin home screen

Menu Item Icon Description

Settings bi-sliders Manage API tokens and domain configuration

Upload Design
bi-file-earmark-arrow-

up
Upload new t-shirt artwork

View Designs bi-palette View existing uploaded designs

Upload Person bi-person-plus-fill Upload new model/endorser photos

View Person bi-people Manage and review uploaded person images

Add Photo Sample bi-image
Combine a design + person into a photo

sample

View Photo

Sample
bi-images See list of combined AI mockups

Delete Logs bi-trash3-fill Remove app log file to free up space

Update Password bi-shield-lock-fill Change admin account password

Logout bi-box-arrow-right Safely sign out of the admin panel

 UI Behavior

• Uses <div class="collapse show" id="menuAdmin"> to allow for collapsible menu

expansion

• <i class="bi ..."> adds intuitive visual icons

• The active section is indented using Bootstrap's ps-5 (padding start) for clarity

 Security Note

While this file only controls UI navigation, actual page access security is handled

individually in each PHP file using session_start() and $_SESSION['admin'] checks.

 Conclusion

The nav_admin.php file is a vital component that ensures the admin interface is easy to

navigate, well-organized, and professional-looking. Its collapsible sidebar structure paired

with iconography creates an excellent user experience.

This modular layout also makes it easy to extend—additional features can be added with just

one <a> line.

2.2.11. public/settings.php

 File Description

The settings.php file allows the administrator to configure and update application-level

settings, including:

• The Replicate API token used to generate AI-based mockups

• The Host Domain URL to ensure image paths are publicly accessible

 Function and Role

• Secured behind an admin session ($_SESSION['admin'])

• Renders a settings form where the administrator can:

o View and update the Replicate API token

o Update the public host domain

• Provides form validation and success/error messaging

• Logs actions and database changes via the built-in Logger

 Main Features

Feature Description

Admin Auth Required Redirects unauthorized users to the login page

Form Handling Accepts and processes POST submissions from the form

Token Visibility Toggle Includes an eye icon to show/hide the API token

Validation & Error Log Detects empty input, handles PDO exceptions, and logs issues

Database Persistence Stores settings using $settings->set(key, value) method

Current Settings Loaded Retrieves and displays current saved values on page load

 User Interface (UI) Elements

• Input: Replicate API Token

o Rendered as a password field for security

o Toggleable with an eye icon (Bootstrap icons)

• Input: Host Domain

o Used to prepend URLs so Replicate API can access images

• Save Button

o Submits the form using POST method

 Security Considerations

Area Status Notes

Admin authentication

Required
Only accessible after login

Input sanitization Yes All fields trimmed and validated

XSS prevention Yes
All user inputs/output passed through

htmlspecialchars()

Logging Active Logs success and error messages

Password visibility

toggle
 Optional Controlled via JS toggle

 Sample Logging Events

• Logger::info('Settings updated: REPLICATE_API_TOKEN or HOST_DOMAIN.')

• Logger::error('Settings: DB error while updating settings: ...')

These help track system changes and diagnose issues.

 Related Folders and Files

• Settings Table / Class: Stores key-value settings for token & domain

• nav_admin.php: Included sidebar navigation for consistent UI

• bootstrap.php: Handles DB connection and autoloaders

 Conclusion

The settings.php file provides a secure, intuitive configuration panel for administrators to

manage essential application settings related to AI functionality and public image hosting. Its

minimalistic layout, combined with error handling and session control, ensures both

usability and safety.

2.2.12. public/update_password.php

 File Description

The update_password.php file enables the administrator to securely update their account

password through a protected form interface.

 Function and Role

• Checks for authenticated sessions via $_SESSION['admin']

• Displays the current admin username (read-only)

• Validates the old password before accepting a new one

• Provides real-time feedback with success and error messages

• Offers a toggle feature for showing/hiding passwords

 Key Features

Feature Description

Admin Login

Required
Ensures access is limited to authenticated users

Password

Verification

Verifies old password before accepting a new one using $adminAuth-

>verify()

Secure Update

Method

Uses $adminAuth->createOrUpdatePassword() to save the new

password

Feature Description

Toggle Visibility

Icons
Built-in Bootstrap Icons to toggle password input visibility

Feedback

Mechanism
Alerts user to success or failure of update

 Form Fields

• Username (non-editable): Pulled from session variable $_SESSION['admin']

• Old Password: Required for verification

• New Password: Required, must not be empty

 Validation Rules

Field Rule

oldpass Must match existing password

newpass Must not be empty

 Security Considerations

Aspect Status Notes

Session Authentication Yes Redirects to login.php if not logged in

Input Validation Yes Validates old password and ensures new is not empty

HTML Escaping Yes Uses htmlspecialchars() on all output

JS Password Toggle Yes Uses Bootstrap icons to toggle password visibility

 Related Components

Component Role

adminAuth class Handles password verification & updating

Component Role

nav_admin.php Injected sidebar navigation

bootstrap.php Provides DB connection and class autoloaders

 Conclusion

The update_password.php file provides a secure and user-friendly interface for

administrators to update their login credentials. It implements essential checks to ensure old

password correctness and secure storage of the new password using the system’s

adminAuth utility.

2.2.13. public/upload_design.php

 File Description

The upload_design.php script provides an administrative interface to upload new master t-

shirt designs into the system. It handles file validation, naming, storage, and database

insertion.

 Function and Role

• Accessible only to logged-in admins.

• Accepts design title and image file as input.

• Validates file extension (only JPG, JPEG, PNG, WEBP).

• Renames the uploaded file using the pattern: [next_id]_[RANDOM8].[ext]

• Inserts the new design into the database.

 Form Fields

Field Name Type Required Notes

titledesign text Yes Title of the design

imagesdesign file Yes Allowed formats: JPG, JPEG, PNG, WEBP

 Validation Rules

Check Description

Title must not be empty Form will return error if left blank

File must be uploaded Upload required

Extension must be valid Only jpg, jpeg, png, webp allowed

File must be successfully

moved

Uses move_uploaded_file() to copy file into

imagesmasterdesign/

DB insert must succeed Calls $md->insert() after successful file move

 File Naming Format

• Generated file name: [AUTO_INCREMENT_ID]_[RANDOM8].[EXT]

• Example: 13_XYZPQRST.webp

This reduces file name collision and helps organize uploads.

 Feedback Mechanism

Status Message

 "Design uploaded successfully."

 "Design title is required."

 "Image file must be uploaded."

 "Only JPG, JPEG, PNG, or WEBP formats allowed."

 "Failed to move uploaded file."

 "Failed to save data to the database."

 Related Components

Component Purpose

MasterDesign Handles the database insert logic

bootstrap.php Loads DB connection and app settings

nav_admin.php Loads the sidebar navigation

 Security Considerations

Concern Mitigated? Details

Admin authentication

required
 Yes Session $_SESSION['admin'] checked

File upload validation Yes
MIME and extension checking, unique name

generation

Output escaping Yes Uses htmlspecialchars() to sanitize user input

 Screenshot Suggestion (for report)

If including screenshots in a Word document:

• Show the upload form interface (Title Design + Upload Image)

• Display example of success and error message

• Showcase file renamed format

 Conclusion

The upload_design.php script ensures that only valid and titled design files are stored in a

secure, structured, and trackable manner. It enhances the admin’s capability to manage the

collection of design assets efficiently and safely.

2.2.14. public/upload_person.php

 Its function is to upload a photo of a model/endorser into the system. It accepts input in

the form of:

• The name or title of the person (titleperson)

• An image file of the person (person_images)

Then it saves the image in the /imagesperson folder and records the metadata into the

database using the PersonModel.

 Section by Section Breakdown

1. Header, Session & File Setup

require __DIR__ . '/../bootstrap.php';

session_start();

if (empty($_SESSION['admin'])) {

 header('Location: login.php');

 exit;

}

• bootstrap.php: Sets up the database connection and autoload.

• session_start(): Starts a session for admin login validation.

• If the user is not logged in as admin, they are redirected to the login page.

2. Initialize Model and Variables

$pm = new PersonModel($db, __DIR__ . '/imagesperson');

$errors = [];

$success = null;

• Creates a $pm object of class PersonModel to handle database insertions.

• Initializes variables to store any error or success messages.

3. Process Form Submission

if ($_SERVER['REQUEST_METHOD'] === 'POST') {

• Executes this block only when the form is submitted via POST.

a. Input Validation

$title = trim($_POST['titleperson'] ?? '');

if ($title === '') {

 $errors[] = 'Title person is required.';

}

if (empty($_FILES['person_images']['name'])) {

 $errors[] = 'Image file must be uploaded.';

}

• Ensures the title is not empty.

• Ensures a file was uploaded.

b. Image Format Validation

$ext = strtolower(pathinfo($_FILES['person_images']['name'], PATHINFO_EXTENSION));

if (!in_array($ext, ['jpg','jpeg','png'])) {

 $errors[] = 'Only JPG, JPEG, or PNG formats are allowed.';

}

• Checks that the file extension is one of the allowed image types.

c. Generate New File Name

$row = $db->fetch('SELECT COALESCE(MAX(id),0)+1 AS nextid FROM person');

$id = $row['nextid'];

$rand = substr(str_shuffle('ABCDEFGHIJKLMNOPQRSTUVWXYZ'), 0, 8);

$newName = $id . '_' . $rand . '.' . $ext;

• Gets the next ID for the person from the database.

• Creates a unique file name using the ID and a random 8-letter uppercase string.

d. Move File & Save to DB

$dest = __DIR__ . '/imagesperson/' . $newName;

if (move_uploaded_file($_FILES['person_images']['tmp_name'], $dest)) {

 if ($pm->insert($title, $newName)) {

 $success = 'Person image successfully uploaded.';

 } else {

 $errors[] = 'Failed to save data to the database.';

 unlink($dest);

 }

} else {

 $errors[] = 'Failed to move uploaded file.';

}

• move_uploaded_file moves the uploaded file to the target directory.

• If successful, the image metadata is inserted into the database.

• If the insert fails, the uploaded file is deleted.

 HTML Section

Displays the upload form and the result.

a. Error and Success Messages

<?php if ($errors): ?>

 <div class="alert alert-danger">...<?= htmlspecialchars($e) ?>...</div>

<?php endif; ?>

<?php if ($success): ?>

 <div class="alert alert-success"><?= htmlspecialchars($success) ?></div>

<?php endif; ?>

• Shows error messages in a red alert box.

• Shows a success message in a green alert box if the upload is successful.

b. Form Input

<form method="post" enctype="multipart/form-data">

 <input type="text" name="titleperson">

 <input type="file" name="person_images">

 <button type="submit">Upload</button>

</form>

• enctype="multipart/form-data" is required for file uploads.

• Allows admin to enter a title and choose an image file to upload.

 Summary of Functionality

The upload_person.php file:

1. Provides a form to upload a person endorser (name + image).

2. Validates the input and file format.

3. Moves the uploaded file to /imagesperson/.

4. Inserts metadata (title & file name) into the database.

5. Displays success or error messages accordingly.

2.2.15. public/view_designs.php

 Main Purpose

This page is used to display a list of T-shirt designs (master designs) from the database in a

table format, specifically for admins. Each row shows:

• Design ID

• Design title

• Thumbnail image

• Publish status (Yes/No)

• Submit date

• Action button to delete the design

 Structure and Code Explanation

1. Header and Authentication

require __DIR__ . '/../bootstrap.php';

session_start();

if (empty($_SESSION['admin'])) {

 header('Location: login.php');

 exit;

}

• Loads basic configuration from bootstrap.php.

• Checks whether an admin is logged in. If not, redirects to the login.php page.

2. Fetching Data from the Database

$md = new MasterDesign($db, __DIR__ . '/imagesmasterdesign');

$designs = $md->fetchAll();

• Creates an instance of the MasterDesign class to handle design data.

• Retrieves all design records from the database using fetchAll().

3. HTML Table Display

<h1 class="mb-4">Master Designs</h1>

<table class="table table-striped table-hover">

• Displays a page title and a styled Bootstrap table.

• The columns shown are:

o ID

o Title

o Thumbnail image

o Publish status

o Submission date

o Action (delete)

<?php foreach ($designs as $d): ?>

<tr>

 <td><?= $d['id'] ?></td>

 <td><?= htmlspecialchars($d['titledesign']) ?></td>

 ...

• Loops through each design and renders a row in the table.

• Displays a small (80px wide) thumbnail image. When clicked, it opens a modal popup

to preview the full image.

4. Delete Action Button

<a href="delete_design.php?id=<?= $d['id'] ?>" class="btn btn-sm btn-danger" onclick="return confirm('Are you

sure you want to delete this design?');">

 <i class="bi bi-trash"></i> Delete

• Provides a button to delete the corresponding design.

• Uses confirm() JavaScript function to show a confirmation dialog before proceeding.

5. Modal for Image Preview

<div class="modal fade" id="designModal" ...>

• When a thumbnail is clicked, this modal appears showing the full-size image.

• Uses Bootstrap modal components and data-bs-* attributes.

6. JavaScript for Modal Logic

var designModal = document.getElementById('designModal');

designModal.addEventListener('show.bs.modal', function (event) {

 var trigger = event.relatedTarget;

 var src = trigger.getAttribute('data-src');

 var modalImg = designModal.querySelector('#modalDesignImage');

 modalImg.src = src;

});

• Listens for the event when the modal is triggered.

• Dynamically sets the image source in the modal based on the data-src attribute from

the thumbnail.

 Summary

view_designs.php is an admin dashboard page that:

• Displays a list of T-shirt designs from the database.

• Allows previewing full-size images in a modal.

• Provides a delete option for each design.

• Uses Bootstrap and Bootstrap Icons for a modern interface.

2.2.16. public/view_person.php

 Main Purpose

This script provides an admin page that displays a list of person endorsers (people who

model the T-shirt designs) in a table format. Each entry includes:

• ID

• Title/Name of the person

• Image thumbnail

• Submission date

• A delete button

It also allows the admin to preview a full-size image of the person in a modal (popup

window).

 Code Breakdown

1. Authentication and Initialization

require __DIR__ . '/../bootstrap.php';

session_start();

if (empty($_SESSION['admin'])) {

 header('Location: login.php');

 exit;

}

• Includes the core configuration file (bootstrap.php).

• Starts a session and checks if the user is an admin.

• If the admin is not logged in, it redirects them to the login page.

2. Data Fetching

$pm = new PersonModel($db, __DIR__ . '/imagesperson');

$persons = $pm->fetchAll();

• Creates an instance of the PersonModel class to handle database operations for

persons.

• Calls fetchAll() to get all person records from the database.

3. HTML Output

<!DOCTYPE html>

<html lang="id">

<head>...</head>

• Standard HTML5 page setup with Bootstrap 5 for layout and styling.

• Language is set to Indonesian (lang="id"), but you can change it to "en" if needed.

4. Table of Persons

<h1 class="mb-4">Person Endorsers</h1>

<table class="table table-striped table-hover">...</table>

• Displays a title and a Bootstrap-styled table.

• Table columns:

o ID: Unique identifier for the person.

o Title Person: The name or title entered for the person.

o Image: A thumbnail of the person’s photo.

o Submit Date: When the person data was submitted.

o Action (Aksi): A delete button.

5. Looping Through Data

<?php foreach ($persons as $p): ?>

<tr>

 <td><?= $p['id'] ?></td>

 <td><?= htmlspecialchars($p['titleperson']) ?></td>

 ...

</tr>

<?php endforeach; ?>

• Loops through each person and prints their information in a table row.

• Uses htmlspecialchars() to avoid XSS vulnerabilities when displaying data.

6. Thumbnail with Modal Preview

<a href="#" data-bs-toggle="modal" data-bs-target="#imageModal" data-src="imagesperson/<?=

htmlspecialchars($p['person_images']) ?>">

 <img src="imagesperson/<?= htmlspecialchars($p['person_images']) ?>" width="80" class="img-thumbnail"

alt="">

• Displays the thumbnail image of the person.

• When clicked, it triggers a Bootstrap modal to preview the full-sized image.

7. Delete Button

<a href="delete_person.php?id=<?= $p['id'] ?>" class="btn btn-sm btn-danger" onclick="return confirm('Yakin

akan menghapus person ini?');">

 <i class="bi bi-trash"></i> Hapus

• A delete button that links to delete_person.php with the person's ID as a query

parameter.

• JavaScript confirm() prompts the user before deletion.

8. Image Preview Modal

<div class="modal fade" id="imageModal" ...>

</div>

• A Bootstrap modal that will display the full-sized image when triggered.

9. JavaScript for Modal

var imageModal = document.getElementById('imageModal');

imageModal.addEventListener('show.bs.modal', function (event) {

 var trigger = event.relatedTarget;

 var src = trigger.getAttribute('data-src');

 var modalImg = imageModal.querySelector('#modalImage');

 modalImg.src = src;

});

• When a thumbnail is clicked, this script sets the src of the modal image to the full-

size version using data-src.

 Summary

view_person.php is an admin-only page that:

• Lists all person endorsers (used as T-shirt mockup models).

• Provides image previews in a modal.

• Allows deletion of any person entry.

• Uses Bootstrap 5 for UI components and PHP for data handling and server-side logic.

Perfect for managing model photo entries in an AI-powered T-shirt design application.

2.2.17. public/view_photo_sample.php

 Main Purpose

This PHP page is for the admin dashboard in an AI T-shirt design application. It displays a

paginated list of generated photo samples, showing:

• The original design image,

• The person/model image,

• The result image (AI-generated merge),

• With options to preview, generate (if not done yet), or delete a record.

 Code Breakdown

1. Authentication & Initialization

require __DIR__ . '/../bootstrap.php';

session_start();

if (empty($_SESSION['admin'])) {

 header('Location: login.php');

 exit;

}

• Includes app setup from bootstrap.php.

• Starts a session and verifies if the user is an admin.

• If not, redirects to the login page.

2. Delete Handler

if ($_SERVER['REQUEST_METHOD'] === 'POST' && isset($_POST['delete_id'])) {

 ...

}

• If the page receives a POST request with a delete_id, it deletes the corresponding

photo sample entry from the database.

• After deletion, it sets a success or error message in the session and reloads the

current page.

3. Pagination Setup

$page = isset($_GET['page']) ? max(1, (int)$_GET['page']) : 1;

$perPage = 10;

$offset = ($page - 1) * $perPage;

• Sets up pagination logic: how many entries per page and which page to show.

$total = $db->fetch('SELECT COUNT(*) AS cnt FROM photosample', [])['cnt'];

$pages = ceil($total / $perPage);

$samples = $db->fetchAll(...);

• Retrieves total sample count and fetches a subset of results (LIMIT ... OFFSET ...) for

current page.

4. Table Display

Each row of the table displays:

• ID

• Prediction ID (related to AI generation)

• Design Image

• Person Image

• Result Image

• Generated Date

• Action Buttons

foreach ($samples as $s):

• Iterates through each sample and displays a row in the table.

• For each image (design, person, result), if available, a thumbnail is shown that can be

clicked to preview in a modal.

5. Action Buttons

 Generate Button

<form method="post" action="generate_photo.php">

 <input type="hidden" name="id" value="<?= $s['id'] ?>">

 <button class="btn btn-sm btn-success">Generate</button>

</form>

• If the result hasn’t been generated yet (imagesresult is missing), a green "Generate"

button is shown.

• Clicking it will submit the sample’s ID to generate_photo.php for AI generation.

 Delete Button

<form method="post" action="">

 <input type="hidden" name="delete_id" value="<?= $s['id'] ?>">

 <button class="btn btn-sm btn-danger">Delete</button>

</form>

• Deletes the sample after user confirms.

• Uses POST and a confirmation dialog.

6. Pagination UI

<ul class="pagination">

 <li class="page-item ...">...

• Bootstrap pagination to navigate between pages.

7. Image Modal (Preview)

<div class="modal fade" id="photoModal">

</div>

• A Bootstrap modal that displays a full-size image when a thumbnail is clicked.

8. JavaScript Behavior

a. Modal Preview Logic

photoModal.addEventListener('show.bs.modal', function (e) {

 var src = e.relatedTarget.getAttribute('data-src');

 photoModal.querySelector('#modalPhotoImage').src = src;

});

• When an image thumbnail is clicked, sets the modal image to the appropriate URL.

b. Loading Feedback for Generate Button

form.addEventListener('submit', function(e) {

 const btn = form.querySelector('button[type="submit"], button.btn-success');

 if (btn) {

 btn.disabled = true;

 btn.innerHTML = '<i class="bi bi-hourglass-split"></i> Generating…';

 }

});

• When the "Generate" button is clicked, it disables the button and changes the label

to show a loading spinner.

 Summary

view_photo_sample.php is a backend admin page that:

• Shows photo samples of T-shirt designs generated by AI.

• Allows admins to view, generate, or delete each sample.

• Features pagination, image preview modal, and confirmation dialogs.

• Built using Bootstrap 5 and PHP with a clean and responsive interface.

Ideal for managing AI-generated design previews in a professional T-shirt mockup

application.

 src/ Folder Overview

This folder contains 9 PHP source files that handle backend logic for an AI-based T-shirt

design web application:

src/

├── AdminAuth.php

├── Database.php

├── index.php

├── Logger.php

├── MasterDesign.php

├── PersonModel.php

├── PhotoSample.php

├── ReplicateService.php

└── Settings.php

2.3.1. src/AdminAuth.php

This class handles admin authentication functions, including:

• Creating or updating admin accounts

• Changing admin passwords

• Verifying login credentials

 Function: createOrUpdatePassword(string $loginadmin, string $plaintextPassword):

bool

• Checks if the loginadmin exists in the msadmin table:

o If it exists → updates the password.

o If it doesn’t → creates a new admin account.

• Passwords are securely hashed using password_hash() (modern and secure PHP

practice).

 Function: updatePassword(int $adminId, string $newPlaintext): bool

• Updates the password for a given admin ID.

• Password is hashed before saving.

• Logs the action using Logger::info() or Logger::error().

 Function: verify(string $loginadmin, string $plaintext): bool

• Checks if the username exists.

• If it does, verifies the password using password_verify().

• Returns true if valid, false if the username or password is incorrect.

 Database Table Used: msadmin

CREATE TABLE msadmin (

 adminid INT PRIMARY KEY,

 loginadmin VARCHAR,

 loginpassword VARCHAR

);

2.3.2. src/Database.php

This is a lightweight PDO-based database abstraction class, designed to:

• Prevent SQL injection,

• Simplify querying across your app,

• Provide a modern OOP interface to interact with MySQL.

 Primary Goal:

Provide secure, consistent database access using PHP PDO.

 Methods:

• query($sql, $params = []): Executes a prepared statement and returns the

PDOStatement.

• fetchAll($sql, $params = []): Returns all matching rows as an array.

• fetch($sql, $params = []): Returns the first row (or null if none).

• execute($sql, $params = []): Executes INSERT, UPDATE, or DELETE; returns the

number of rows affected.

 Security

100% protected from SQL injection using prepare + bind + execute.

2.3.3. src/index.php

This file is unused.

Its only purpose is to prevent users from browsing the src/ folder directly by default.

2.3.4. src/Logger.php

A simple and configurable logging class for writing messages to a log file.

It is useful for debugging, audits, and tracking application behavior—especially in

production.

 Purpose:

To log important application events with levels like:

• DEBUG

• INFO

• WARNING

• ERROR

 Method: init(array $config)

• Initializes the logger with:

o path: file path for log file.

o level: minimum log level to write.

• Automatically creates the log folder if it doesn’t exist.

 Method: log($level, $message)

• Internal function that writes log messages in this format:

[2025-06-30 10:00:01][INFO] Admin login success

 Log Level Methods:

Method Description

debug() Logged only if level is DEBUG

info() Logged if level is DEBUG or INFO

Method Description

warning() Logged if level is DEBUG, INFO, or WARNING

error() Always logged regardless of configured level

 Logger Benefits

Feature Description

 Simple & fast No third-party library needed

 Auto-create folders Prevents "folder not found" errors

 Log level control Allows lightweight logs in production

 CodeCanyon-ready Clean and configurable logging preferred by reviewers

 Sample Log Output:

[2025-06-30 15:42:11][INFO] Admin 'kukuh' successfully logged in

[2025-06-30 15:42:15][ERROR] Failed to connect to Replicate API

[2025-06-30 15:42:17][DEBUG] Input: design_id=45, user_id=2

2.3.5. src/MasterDesign.php

This class manages CRUD operations for master T-shirt design data uploaded by users.

 Purpose:

Handle backend management for mockup design files:

• Add new designs

• Retrieve all designs

• Delete designs (from DB and file system)

 Properties:

• private Database $db: database access instance

• private string $uploadDir: the file path where designs are stored

 Constructor: __construct(Database $db, string $uploadDir)

• Initializes database connection and upload path.

• Automatically appends trailing slash (/) to the upload directory path.

 Method: insert(string $title, string $filename): bool

• Adds a new design to the masterdesign table.

• Sets default values:

o titledesign: the title of the design

o imagesdesign: uploaded file name

o ispublish: default 1

o submitdate: current date

Example:

$design->insert("Naruto T-shirt", "naruto123.png");

 Method: fetchAll(): array

• Returns all designs sorted by submitdate (newest first).

 Method: delete(int $id): bool

• Deletes the image file from disk and its record from the database.

• Steps:

1. Fetch file name from database.

2. Remove file from the folder (if exists).

3. Delete record from DB.

Example:

$design->delete(5); // deletes design with ID 5

 Safety Features

Feature Description

 Prepared Statements Prevents SQL injection

 File existence check Ensures file exists before deleting

 Silent unlinking Uses @unlink() to prevent warnings

 Database Table: masterdesign

CREATE TABLE masterdesign (

 id INT AUTO_INCREMENT PRIMARY KEY,

 titledesign VARCHAR(255),

 imagesdesign VARCHAR(255),

 ispublish TINYINT DEFAULT 1,

 submitdate DATETIME

);

2.3.6. src/PersonModel.php

 File: src/PersonModel.php

 Purpose:

This class handles CRUD operations (Create, Read, Delete) for managing person endorser

images, which are typically photo models used in AI T-shirt mockup applications.

 Class Structure: PersonModel

 Properties:

private Database $db;

private string $uploadDir;

• $db: Instance of the Database class used to run SQL queries securely via PDO.

• $uploadDir: The folder path where person images are stored on the server.

 Constructor:

public function __construct(Database $db, string $uploadDir)

• Initializes the database connection and the upload directory.

• Ensures the directory path ends with a trailing slash / using rtrim().

 Methods

1. insert(string $title, string $filename): bool

$sql = "INSERT INTO person (titleperson, person_images, submitdate)

 VALUES (:title, :img, NOW())";

• Inserts a new person record into the person table.

• Parameters:

o title: name or title of the person

o filename: uploaded image file name

• NOW() sets the current date and time as the submitdate.

• Returns true if insert was successful.

2. fetchAll(): array

return $this->db->fetchAll('SELECT * FROM person ORDER BY submitdate DESC');

• Retrieves all records from the person table.

• Sorts by submitdate in descending order (latest first).

• Returns an array of person entries.

3. delete(int $id): bool

$row = $this->db->fetch('SELECT person_images FROM person WHERE id = :id', [':id'=>$id]);

• Deletes a person record by its id.

• Steps:

1. Retrieves the filename of the image for the specified person.

2. Checks if the image file exists in the upload directory.

3. Deletes the file using @unlink() (suppresses warning if file not found).

4. Deletes the record from the person table in the database.

• Returns true if deletion was successful.

 Database Table: person

CREATE TABLE person (

 id INT NOT NULL,

 titleperson VARCHAR(255) NOT NULL,

 person_images TEXT NOT NULL,

 submitdate DATETIME NOT NULL

);

 Fields:

• id: Unique identifier for each person

• titleperson: The name/title of the person (model)

• person_images: The image filename

• submitdate: Timestamp when the record was added

 Summary:

PersonModel.php is a utility class to manage photo models or person endorsers in your T-

shirt design application. It:

• Allows uploading new person images,

• Lists all uploaded persons,

• Deletes records and cleans up image files,

• Keeps your database and file system in sync.

The class uses prepared statements (safe from SQL injection) and handles file deletion

gracefully.

2.3.7. src/PhotoSample.php

 File: src/PhotoSample.php

 Purpose:

This PHP class handles CRUD operations (Create, Read, Update, Delete) for photo samples,

which are combinations of a T-shirt design and a person (model) image, along with the

generated result using AI.

It is part of an AI-powered T-shirt design app that merges user designs with model photos to

create realistic previews.

 Class: PhotoSample

 Properties

private Database $db;

• $db: A database instance (from the Database class) used to run SQL queries securely

using PDO.

 Constructor

public function __construct(Database $db)

• Initializes the class with a reference to the database connection.

 Methods

1. exists(int $designId, int $personId): bool

SELECT id FROM photosample WHERE designid = :d AND personid = :p

• Checks if a combination of a given design and person already exists in the

photosample table.

• Returns true if a record exists, otherwise false.

2. updatePredictionId(int $id, string $newPredictionId): bool

UPDATE photosample SET predictionid = :pred WHERE id = :id

• Updates the predictionid of an existing record, based on its unique id.

• Returns true if the update was successful.

3. insert(...)

INSERT INTO photosample (...)

VALUES (:pred, :d, :p, :u1, :u2, :res, :isp, NOW())

• Inserts a new sample record into the photosample table.

• Parameters:

o predictionId: The ID returned by the AI model (like from Replicate API).

o designId: ID of the selected T-shirt design.

o personId: ID of the selected model.

o urlDesign: URL/path of the design image.

o urlPerson: URL/path of the person image.

o urlResult: URL/path of the AI-generated result (optional at insert).

o publish: Whether to publish the result or not (1 = yes, 0 = no).

• Automatically sets the current time as generateddate.

4. updateResult(int $id, string $imageUrl): bool

UPDATE photosample SET imagesresult = :img, ispublish = 1 WHERE id = :id

• Updates the imagesresult column (the final generated image).

• Also sets ispublish to 1 (true).

• Returns true if the update was successful.

5. fetchAll(): array

SELECT * FROM photosample ORDER BY generateddate DESC

• Retrieves all photo sample records from the database, ordered by newest first.

• Returns an array of all photo samples.

6. delete(int $id): bool

DELETE FROM photosample WHERE id = :id

• Deletes a sample record by its id.

• Returns true if a row was successfully deleted.

 Related Database Table: photosample

Table Structure:

CREATE TABLE photosample (

 id INT NOT NULL,

 predictionid TEXT NOT NULL,

 designid INT NOT NULL,

 personid INT NOT NULL,

 urlimagesdesign TEXT NOT NULL,

 urlimagesperson TEXT NOT NULL,

 imagesresult TEXT NOT NULL,

 ispublish TINYINT(1) NOT NULL,

 generateddate DATETIME NOT NULL

);

Field Descriptions:

Column Description

Id Primary key (usually auto-incremented)

predictionid Identifier of the AI-generated prediction

designid Foreign key to the T-shirt design used

personid Foreign key to the model (person) used

urlimagesdesign URL or path to the design image

urlimagesperson URL or path to the model photo

imagesresult URL or path to the AI-generated result image

Ispublish Whether this result is publicly visible (1/0)

generateddate Timestamp of when the result was created

 Summary:

The PhotoSample class is the core handler for combining design + model photos, managing

the resulting image generated by AI.

It provides:

• Checks for existing combinations

• Creation of new samples

• Updates of prediction and result images

• Deletion of records

• Retrieval of all photo samples for display

It works alongside the AI generation process (e.g., Replicate API) and is tightly integrated

with your app's admin interface.

2.3.8. src/ReplicateService.php

 File: src/ReplicateService.php

 Purpose:

This PHP class is responsible for interacting with the Replicate API, a third-party image

generation service. It sends requests to generate an image by merging two input images

with a prompt and optionally waits for the result to be ready.

Used in an AI-powered T-shirt design application, this class helps merge the T-shirt design

and model photo into a realistic AI-generated image.

 Class: ReplicateService

 Property

private string $token;

• Stores the API token for authenticating requests to the Replicate API.

 Constructor

public function __construct(string $token)

• Initializes the service with the API token needed to make authorized calls to

Replicate.

 Methods

1. generate(string $input1, string $input2, string $prompt): array

 Purpose:

Sends a request to the Replicate API to create a new image generation job (prediction).

 Parameters:

• input1: URL or base64 of the first image (e.g., design)

• input2: URL or base64 of the second image (e.g., model)

• prompt: A text instruction guiding how the AI should combine the images

 Returns:

• An array of data returned by the Replicate API, including the prediction ID

 Internal Notes:

• Uses curl to send a POST request

• Uses the Prefer: wait header to signal that it prefers a synchronous response

• Throws a RuntimeException if the API returns an error

2. getResult(string $predictionId, int $retries = 10, int $delay = 8): array

 Purpose:

Polls the Replicate API using a predictionId to check if the image generation is complete.

 Parameters:

• predictionId: The ID received from the generate() method

• retries: How many times to retry (default 10)

• delay: Delay in seconds between each retry (default 8)

 Behavior:

• Sends up to retries HTTP GET requests to Replicate

• If the output is ready (i.e., output key exists), it returns the result

• If no output is ready after all retries, throws a RuntimeException

3. generateAndWait(...): Combination of Generate + Polling

 Purpose:

A high-level function that:

1. Starts the generation request,

2. Waits until the output is ready by polling,

3. Logs progress using Logger

 Parameters:

• input1, input2, prompt: Same as generate()

• retries, delay: Control the polling behavior

 Workflow:

generate() → get prediction ID → poll result → return output

 Error Handling:

• Logs every polling attempt

• Logs when the output is ready

• Throws a clear exception if the image is not generated after all retries

 Example Use Case

Used when a user uploads a design and selects a model photo. This class:

• Sends the combination to Replicate with a description (prompt)

• Waits for the result image to be ready

• Saves the result to be displayed or published

 Logging

The class uses Logger::info() and Logger::debug() to log:

• When generation starts

• Each polling attempt

• When the output is ready

• If retries fail

 Summary

ReplicateService.php is a utility class that:

• Sends image generation jobs to the Replicate API

• Supports both synchronous and asynchronous workflows

• Includes built-in retry and logging mechanisms

• Forms the core integration between your PHP backend and Replicate's AI image

generator

It’s essential for generating mockup previews by combining design and model images.

2.3.9. src/Settings.php

 File: src/Settings.php

 Purpose:

This class provides a simple, database-driven configuration management system. It allows

you to get and set key-value pairs in a settings table, such as the API token for Replicate or

the base URL of the website.

It is useful for storing environment variables or dynamic configuration values that can be

changed without editing the PHP code.

 Class: Settings

 Property:

private Database $db;

• Holds the reference to the Database class for executing SQL queries securely using

PDO.

 Constructor:

public function __construct(Database $db)

• Initializes the class with the given database connection.

 Methods

1. get(string $key): ?string

$row = $this->db->fetch('SELECT `value` FROM settings WHERE `key` = :key', [':key'=>$key]);

return $row['value'] ?? null;

 Purpose:

• Retrieves the value for a given configuration key.

• Returns the value as a string if found, otherwise null.

 Example Usage:

$token = $settings->get('REPLICATE_API_TOKEN');

$host = $settings->get('HOST_DOMAIN');

2. set(string $key, string $value): bool

$row = $this->db->fetch('SELECT id FROM settings WHERE `key` = :key', [':key'=>$key]);

if ($row) {

 return $this->db->execute('UPDATE settings SET `value` = :value WHERE `key` = :key',

[':value'=>$value,':key'=>$key])>0;

}

return $this->db->execute('INSERT INTO settings (`key`,`value`) VALUES (:key,:value)',

[':key'=>$key,':value'=>$value])>0;

 Purpose:

• Updates an existing key if it already exists.

• Inserts a new key-value pair if it does not exist.

• Returns true if the insert/update was successful.

 Example Usage:

$settings->set('REPLICATE_API_TOKEN', 'your_token_here');

$settings->set('HOST_DOMAIN', 'https://yourdomain.com/app');

 Database Table: settings

Table Structure:

CREATE TABLE `settings` (

 `id` INT NOT NULL,

 `key` VARCHAR(255) NOT NULL,

 `value` TEXT NOT NULL

);

Field Descriptions:

Column Description

id Primary key (usually auto-incremented)

key The configuration key (e.g., REPLICATE_API_TOKEN)

value The configuration value (e.g., the API token or domain URL)

 Sample Data:

INSERT INTO `settings` (`id`, `key`, `value`) VALUES

(1, 'REPLICATE_API_TOKEN', '........'),

(2, 'HOST_DOMAIN', 'https://yourdomain.com/yourfolder/public');

This sets:

• Your API token for image generation,

• The base domain used for constructing full image URLs or routing.

 Summary:

The Settings class is a lightweight configuration manager for your PHP application. It

enables you to:

• Store and retrieve key settings like API tokens or host URLs from a database,

• Avoid hardcoding sensitive or environment-specific values in your code,

• Easily update config values from the database without redeploying your app.

It works well alongside the ReplicateService and other components that need dynamic

settings.

2.4.1. bootstrap.php

 Purpose:

This file acts as the entry point (bootstrap) for your PHP application. It:

• Loads all core class files

• Loads the configuration

• Initializes the logger

• Establishes a database connection

• Instantiates helper classes like AdminAuth and Settings

 Code with English Comments:

<?php

/**

 * bootstrap.php

 * Application bootstrap: loads config, initializes logger & database

 *

 * AI T-Shirt Design Application

 * Created by: Kukuh TW

 */

// 1. Load core class files

require __DIR__ . '/src/Logger.php';

require __DIR__ . '/src/Database.php';

require __DIR__ . '/src/AdminAuth.php';

require __DIR__ . '/src/MasterDesign.php';

require __DIR__ . '/src/PersonModel.php';

require __DIR__ . '/src/PhotoSample.php';

require __DIR__ . '/src/ReplicateService.php';

require __DIR__ . '/src/Settings.php';

// 2. Load configuration file

$config = require __DIR__ . '/config.php';

// 3. Initialize logger

Logger::init($config['logger']);

Logger::info('Logger initialized.');

// 4. Initialize database connection

try {

 $db = new Database($config['db']);

 Logger::info('Database connection established.');

} catch (Exception $e) {

 die('Fatal error: ' . $e->getMessage());

}

// 5. Initialize Admin Authentication and Settings classes

$adminAuth = new AdminAuth($db, $config['features']['admin_password']);

$settings = new Settings($db);

?>

2.4.2. config.php

 Purpose:

This file contains the application's configuration settings, including:

• Database credentials

• Logger configuration

• Feature flags

 Code with English Comments:

<?php

/**

 * config.php

 * Configuration settings for the application

 *

 * AI T-Shirt Design Application

 * Created by: Kukuh TW

 */

return [

 'db' => [

 'host' => 'localhost', // Database host

 'dbname' => 'designkaos', // Database name

 'user' => 'root', // Database username

 'password' => '', // Database password

 'charset' => 'utf8mb4', // Character encoding

],

 'logger' => [

 'path' => __DIR__ . '/logs/app.log', // Log file path

 'level' => 'DEBUG', // Minimum log level (DEBUG, INFO, etc.)

],

 'features' => [

 'admin_password' => false, // Set to true only once to create admin password; set back to false after setup

],

];

?>

2.4.3 .htaccess

 Purpose:

This file defines URL rewrite rules using Apache's mod_rewrite. It ensures:

• When a user visits /yourfolder/, they are automatically redirected to the login page

at /yourfolder/public/login.php

 Rewritten Explanation in English:

RewriteEngine On

RewriteBase /yourfolder/

If the URL is just /yourfolder or /yourfolder/, redirect to the login page

RewriteCond %{REQUEST_URI} ^/yourfolder/?$ [NC]

RewriteRule ^$ public/login.php [L,R=302]

 Note: Replace /yourfolder/ with the actual folder name where your app is located, such

as /designkaos/.

 Summary

File Purpose

bootstrap.php Initializes the core system (classes, logger, database, auth)

config.php Central place for app configuration like DB connection and logging

.htaccess Sets URL rewriting rules and redirection for default routing behavior

This setup ensures a clean structure for initializing, securing, and routing your PHP web

application.

👤 Developer Contact
• Name: Kukuh TW

• Email: kukuhtw@gmail.com

• WhatsApp: +628129893706

• Instagram: @kukuhtw

• Twitter/X: @kukuhtw

• Facebook: facebook.com/kukuhtw

• LinkedIn: linkedin.com/in/kukuhtw

mailto:kukuhtw@gmail.com
https://wa.me/628129893706
https://instagram.com/kukuhtw
https://x.com/kukuhtw
https://facebook.com/kukuhtw
https://id.linkedin.com/in/kukuhtw

